IMPLEMENTING NIST SSDF WITHOUT KILLING YOUR CI/CD PRODUCTIVITY

NIST Secure Software Development Framework (SSDF v 1.1)

digicert

ABOUT TODAY'S SPEAKER

Developed safety-critical avionics and medical software for 10+ years

Expert in software development methodology, cybersecurity, PKI

BSCS/EE, MBA

EDDIE GLENN

Senior Manager Software Trust, DigiCert

-

AGENDA

Introduction

Challenges

3 NIST SSDF Framework Overview

4 Leveraging automation

5 How DigiCert can help

Summary

SOFTWARE ATE THE WORLD

PRACTICALLY EVERY BUSINESS IS A SOFTWARE BUSINESS.

Financial | Healthcare | Transportation | Infrastructure | Retail | Agriculture | Industrial | Insurance | Communications | Tech | Entertainment

OUR SOFTWARE IS UNDER ATTACK

BLEEPINGCOMPUTER

Hackers compromise 3CX desktop app in a supply chain attack

A digitally signed and trojanized version is reportedly being used to target the company's customers in an ongoing supply chain attack.

The Hacker News

Malware Attack on CircleCI Engineer's Laptop Leads to Recent Security Incident

circleci

The CI/CD service CircleCI said the "sophisticated attack" took place on December 16, 2022, and that the malware went undetected by its antivirus software.

Travis Cl

91%

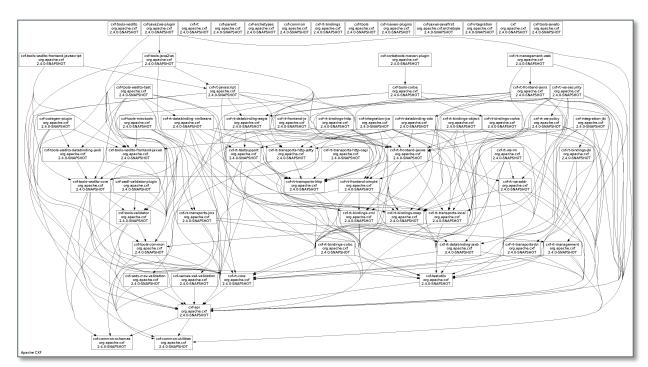
of businesses reported a software supply chain attack last year

-- Data Theorem

LOST REVENUE, MARKET SHARE, REPUTATION

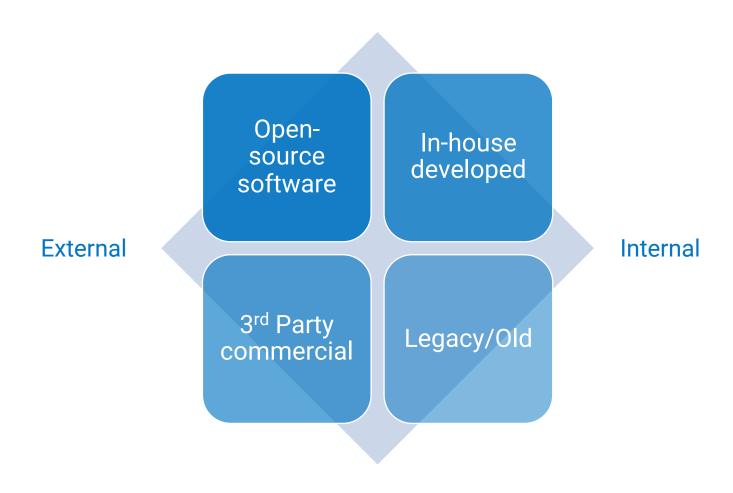
NotPetya maiware estimated by US
Dept of Homeland Security to cause
\$10B in
world-wide damages

WHY IS STOPPING THESE ATTACKS SO HARD?

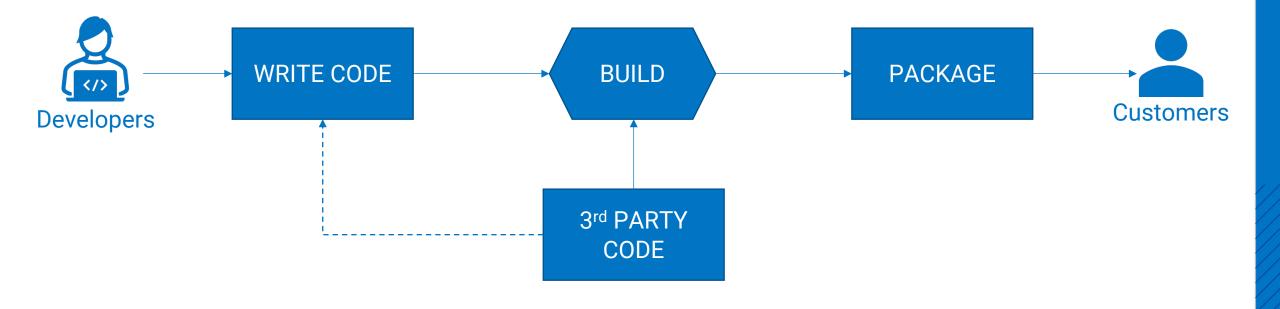

- Modern Software is Complex
- Organizations are Siloed & Understaffed
- Broad Attack Surfaces & Diverse Attacks

MODERN SOFTWARE IS COMPLEX

It's not your typical Windows app anymore...

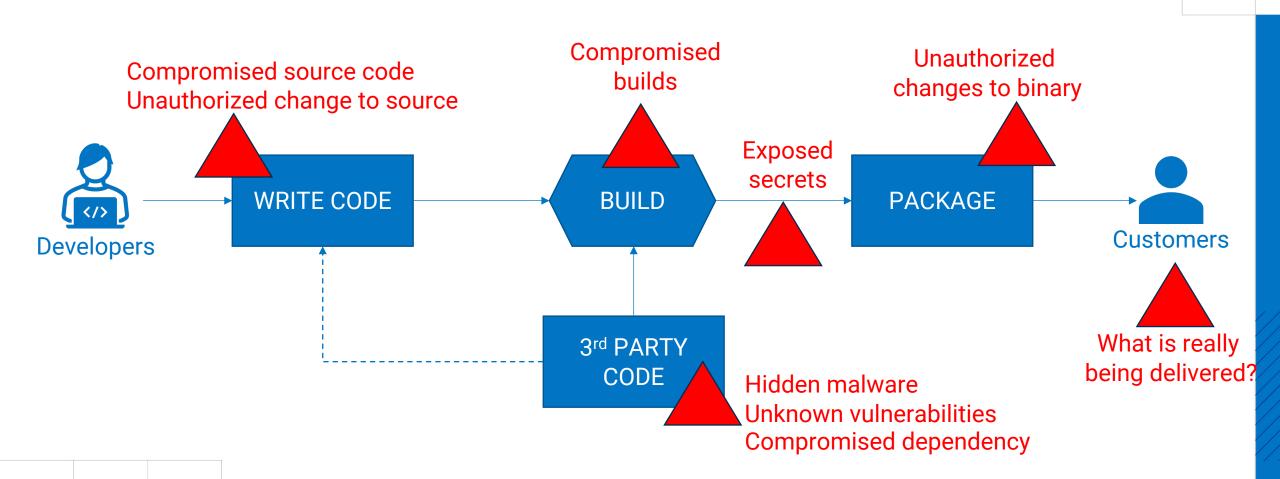

- Geographically distributed software teams
 - 100's or 1000's of global developers
- Extremely large code bases
- Multi-platform deployment
- Large software supply chain:
 - Open-source software
 - Third party commercial software
 - In-house developed software
 - OLD/Legacy Software
- Lots of dependencies, known & unknown
- DevOps/CI/CD frequent releases
- Global presence global regulatory issues

Apache HTTP Server Dependency Graph - approx. 2M SLOC


SOFTWARE SUPPLY CHAIN

Where does your software come from?

HOW IS SOFTWARE MADE?


Software Development Lifecycle

BROAD ATTACK SURFACE

≡ © 2024 DigiCert. All rights reserved.

Attacks can, and do, happen anywhere during this process

ORGANIZATIONAL CHALLENGES

Mobile App Dev Team

Java Dev Team

No Visibility & Enforcement

Successful Tampering

Missed Threats Lack of Transparency

Software complexity

- Millions of lines of code
- Open-source, 3rd party software
- Legacy, old software
- Multi-platform dev & deployment

People

- Disparate software teams, tools & methodologies
- Pressure to do more in less time
- Security often lower priority than new features

Organization

- Siloed teams people, process, and technology
- Product security & PKI support often understaffed
- Security tools not integrated with dev tools

PRACTICAL GUIDANCE

for implementing Secure Software Development Framework (SSDF) V1.1

NIST Special Publication 800-218

Secure Software Development Framework (SSDF) Version 1.1:

Recommendations for Mitigating the Risk of Software Vulnerabilities

> Karen Scarfone Donna Dodson

This publication is available free of charge from https://doi.org/10.6028/NTST.SP.800-218

SSDF V1.1 AT A GLANCE

PREPARE THE ORGANIZATION (PO)

SDLC security should not be an afterthought

PO.1: Define security policies BEFORE software development begins including those that cover

- The software infrastructure used
- Software developed by the organization & developed by third parties (e.g., open source)

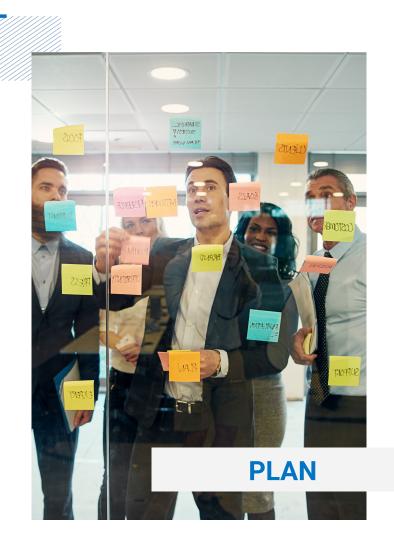
PO.2: Define security roles and responsibilities

- Across all aspects of the SDLC (requirements, design, testing, security)
- Define who is authorized to do what (e.g., sign code, approve code signing action)

PO.3: Select and utilize supporting SDLC tools

- Select to mitigate risks, automation
- Establish security policies on the tools
- Generate intermediate artifacts to support security policy

PREPARE THE ORGANIZATION (PO)


SDLC security should not be an afterthought

PO.4: Define & use criteria for software security

- Ensure that criteria helps to manage risks (KPIs)
- Record security check approvals, rejections, and exception requests
- Use toolchains to automate tasks and gather information
- Automate decision making processes
- Only only authorized personnel to access information

PO.5: Implement and maintain secure SDLC environments

- Use multi-factor, risk-based authentication
- Network segmentation
- Minimize human access to toolchain systems
- Separate production from non-production systems

PROTECT SOFTWARE (PS)

PS.1 Protect all SDLC artifacts from unauthorized access and tampering.

Store all SDLC artifacts (source, executables, scripts, CaC, etc) in a repository based on least privilege

- Store all artifacts in a repository and restrict access
- Digitally sign all SDFC artifacts prevents unauthorized tampering and shows authenticity
- Use version control
- Have owners review and approve changes
- Use code signing to protect the integrity of executables
- Use cryptography to protect file integrity

PROTECT SOFTWARE (PS)

PS.2 Provide a mechanism for verifying software release integrity

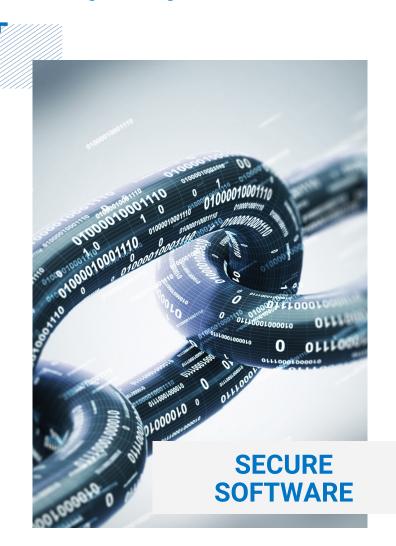
Make software integrity verification information available to software acquirers/consumers

- Post cryptographic hashes for release files
- Use an established certificate authority for code signing to consumers can trust can confirm the validity of your signatures
- Periodically review code signing processes, including certificate renewal, rotation, revocation, and protection (AUTOMATE!)

PROTECT SOFTWARE (PS)

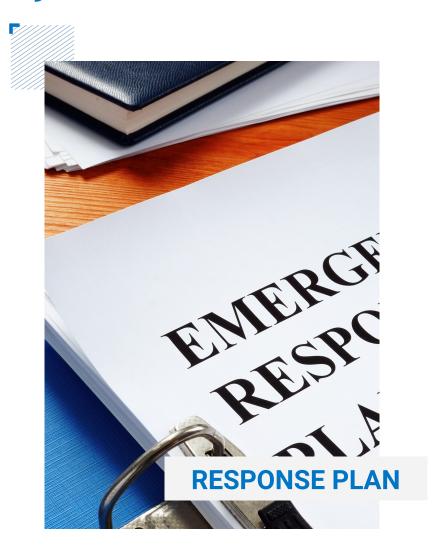
PS.3 Archive and protect each software release

Make software integrity verification information available to software acquirers/consumers


- Securely archive all files and supporting data for every software release, including integrity information
- Collect, share, and maintain provenance data for all components of each software release (SBOMs)

PRODUCE WELL-SECURED SOFTWARE (PW)

Design and write software to meet security requirements


- Utilize threat modeling/detection, attack modeling/detection
- Utilize built-in support for standardized security features instead of implementing proprietary ones
- Review software design for compliance with security requirements
- Verify that third-party software complies with security requirements
- Follow secure coding practices
- Use SDLC tools that improve executable security
- Perform code reviews to ensure that code adheres to security policies
- Test for security vulnerabilities

RESPOND TO VULNERABILITIES (RV)

Gather information from various sources about potential vulnerabilities that exist in software components used by your software

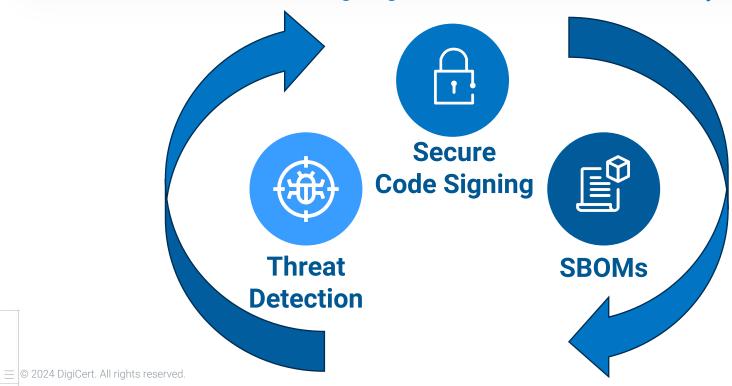
- Creating and maintaining SBOMs for each release imperative for this
- Monitor vulnerability databases
- Use tools to automate
- Create a policy that addresses vulnerability disclosures
- Plan and implement risk responses for vulnerabilities

AUTOMATION IS KEY

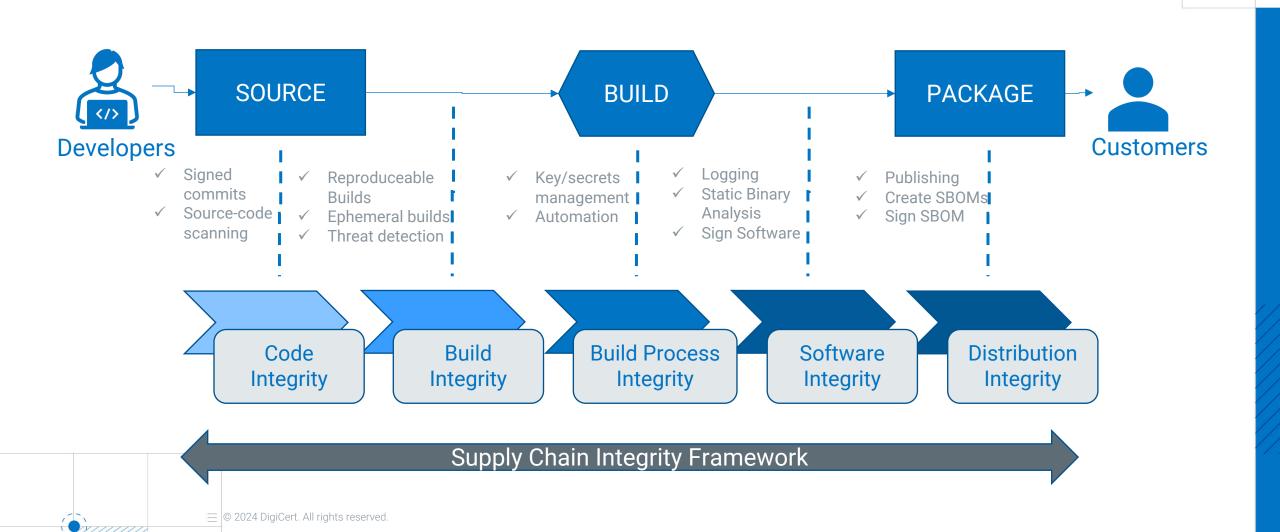
when implementing frameworks like SSDF NIST Special Publication 800-218

Secure Software Development Framework (SSDF) Version 1.1:

Recommendations for Mitigating the Risk of Software Vulnerabilities


> Murugiah Souppaya Karen Scarfone Donna Dodson

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-218



EMBED THESE ACTIONS IN EVERY RELEASE CYCLE

Threat detection, artifact signing & SBOMs in a unified security workflow

SOFTWARE INTEGRITY IN PRACTICE

DIGICERT'S APPROACH

Mobile App Dev Team

Java Dev Team

፟፝፞፞ኯ፟፝ቚ፟፞

Windows
Dev Team

Enterprise-wide Visibility & Enforcement Verifiable
Authenticity
throughout SDLC

Integrated Threat & Vulnerability
Detection

Software Transparency

PKI Support

Product and Enterprise Security

Auditors, Risk, & Compliance

• A software lifecycle security platform that:

- Unifies Dev, PKI support, security, and compliance teams across the enterprise
- Provides a single pane of glass for visibility
- Enforces configurable product security controls across the enterprise
- Integrates and automates deep threat & vulnerability scanning with secure authenticity controls (signing) into build workflows
- Generates comprehensive software bills of materials
- Easy and unobtrusive for dev teams to use
- Easily scales across the enterprise

DIGICERT SOFTWARE TRUST MANAGER

Protecting the software development lifecycle from supply chain attacks

Enterprise Secure Code Signing

Trusted public certificates

Secure FIPS 140-2 key storage

Automated certificate & key management

Enterprise Software Security

Centralized security policy enforcement

Integrated threat & vulnerability detection

Policy-driven software release

Enterprise Software Transparency

Enterprise-wide visibility for compliance

Software bill of materials

Irrefutable record of signing activities

- PROTECTS against software supply chain attacks
- REDUCES RISKS of releasing compromised software
- INCREASES
 EFFICIENCY of
 software, security,
 and compliance
 teams

Embedded software | Enterprise software | Cloud native software | Windows | Linux | macOS | iOS | Android | Kubernetes

SUMMARY

DIGICERT SOFTWARE TRUST MANAGER

Threat detection, secured code signing & SBOMs in a unified security workflow that is integrated, fast, easy, and automated for developers

Threat **Detection**

25B+ threat database

Complete binary scanning

Low impact to CI/CD

Secure Code Signing

Secured private keys

Role-based access control

Enterprise-wide visibility and signing policy

SBOMs

Deep binary decomposition

3rd party & open source

Regulatory compliance