
digicert

TRUST SUMMIT ROAD SHOW

PREPARING FOR THE FUTURE THREATS WITH TODAY'S SOLUTIONS

A strategic roadmap for preparation against quantum threat

digicert

AGENDA

1 Introduction

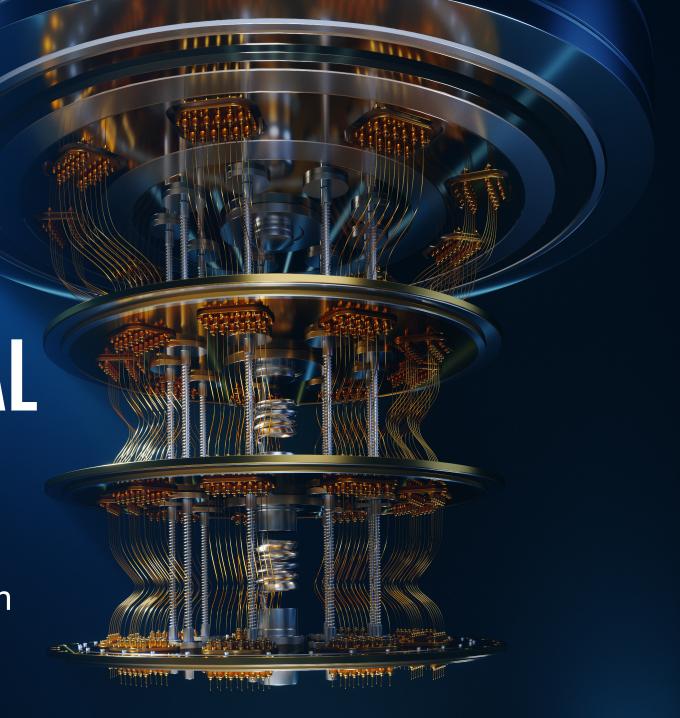
Why Post Quantum Crypto (PQC) matters?

O3 Current Progress towards quantum safe era

Migration Challenges & Crypto Agility

05 DigiCert's Position

INTRODUCTION



WHY POST QUANTUM CRYPTO (PQC) MATTERS?

QUANTUM COMPUTING HAS MONUMENTAL POTENTIAL

1000s of times faster
Accelerate discovery and innovation

SECURING TOMORROW, TODAY

The Urgent Shift to Post-Quantum Cryptography

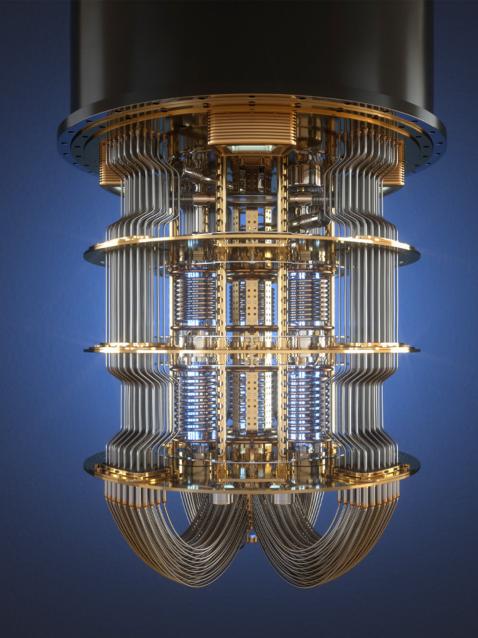
The Inevitable Change

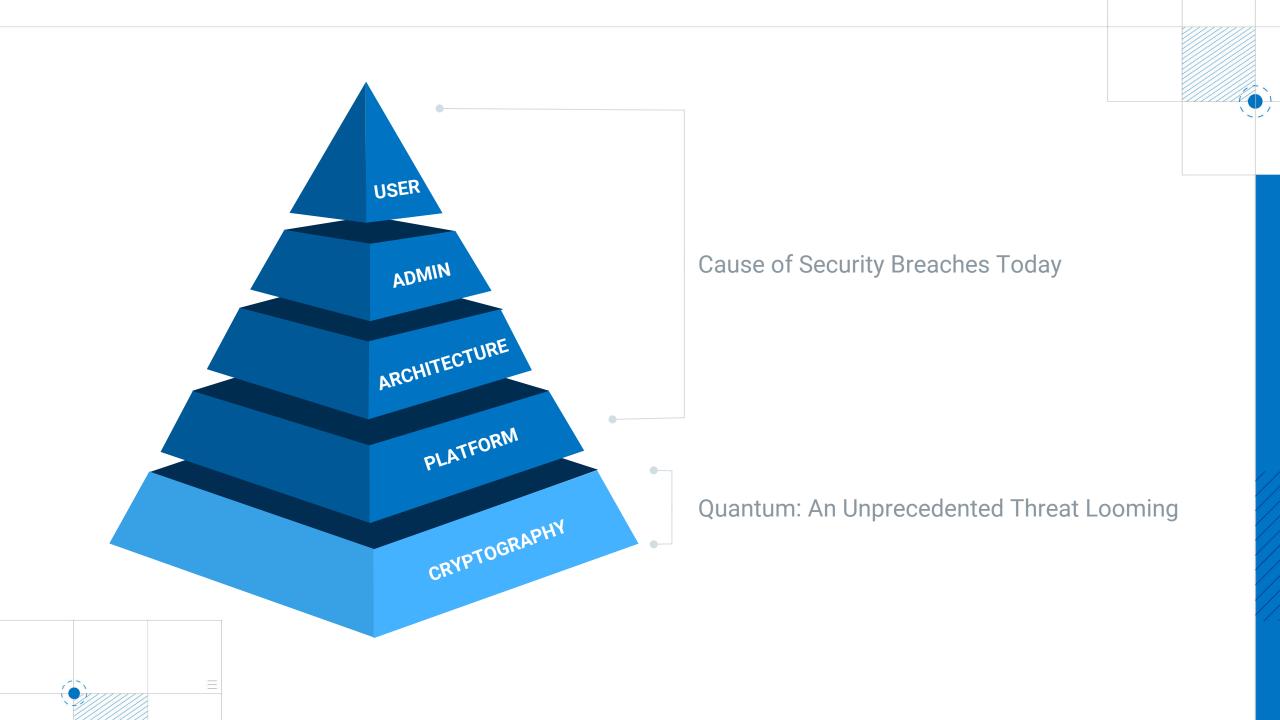
- Internet security's complete reinvention
- Quantum redefines 'if' into 'when'
- Quantum era disrupts current encryption

The Accelerating Threat

- Machine learning fast-tracks quantum
- Quantum threat looms closer, UNEXPECTEDLY
- Quantum error correction closer than ever

The DigiCert Advantage


- 5+ years leading quantum research
- Experts in your corner, guiding from industry knowledge
- Proven public & private solutions


THE QUANTUM EFFECT ON TODAY'S CRYPTOGRAPHY

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack	
Asymmetric	RSA 2048	112		Shor's Algorithm	
	RSA 3072	128	0		
	ECC 256	128	U		
	ECC 521	256			
Symmetric	AES 128	128	64	Grover's	
	AES 256	256	128	Algorithm	

THE IMPACT OF QUANTUM COMPUTING

Breaks Everything | Complex Fix | Accelerating Timelines

THE IMPACT OF QUANTUM COMPUTING

Breaks Security

- Harvest Now; Decrypt Later
- Sensitive Data Exposed
- Encryption Keys Cracked
- Tampered Documents & Software

Upends Business Plans

- Disrupted Supply Chains
- Strategic Plans Unveiled
- Mandatory System Overhauls

Cost & Resource Implications

- Surge in IT Spending
- Training Workforces
- Resource Redistribution

Solution Takes Years

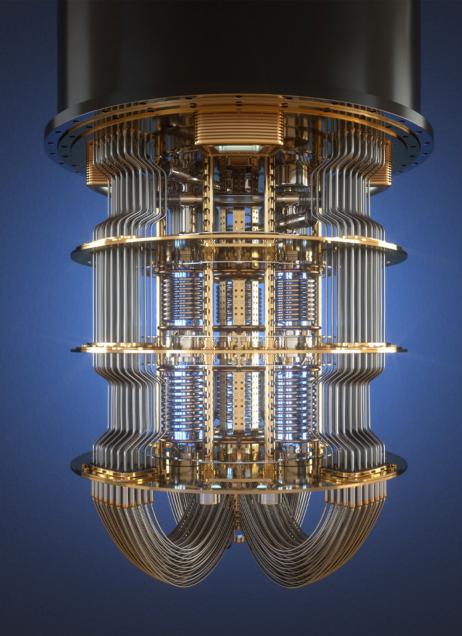
- Not a "drop-in" fix
- Requires architecture changes
- Potential interoperability issues

WHY NOW

Quantum & AI = Act Now

- Emerging tech accelerates security threats
- Proactive measures are critical now

Compliance Readiness

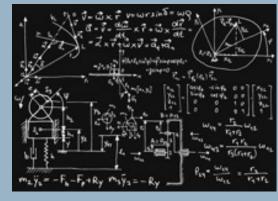

- Regulations evolve faster than adoptions
- Stay at-pace with early compliance

Future vulnerabilities, today's risk

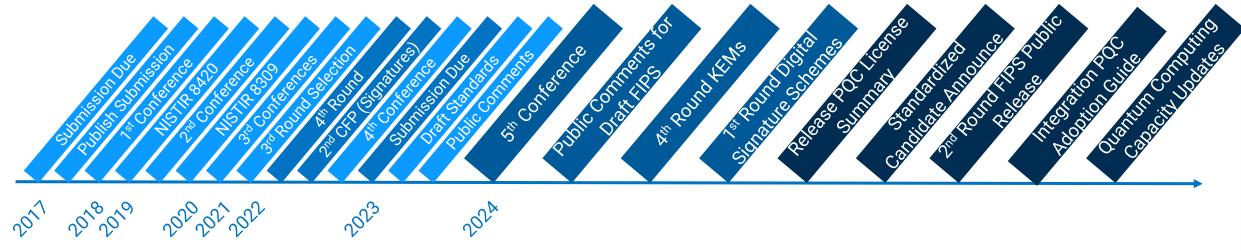
- Tomorrow's threats need today's solutions
- Anticipate, don't wait for risks

Keep your edge

Innovate and secure proactively


CURRENT PROGRESS TOWARDS QUANTUM SAFE ERA

PATHWAYS TO QUANTUM SAFETY



Quantum Key Distribution

Quantum-Safe Cryptography

AN ACCELERATING PQC REGULATORY TIMELINE

Past

- NIST Process
- Executive Order
- NCCoE Migration
- Test Labs

Present (2024-2025)

- Implementing Protocols Now
- Prioritizing Immediate PQC Adoption
- Active Engagement in PQC Transition
- Urgent Integration of PQC Standards

Future

- Staying compliant
- Securing data/devices for the long run
- Staying crypto-agile during PQC era

QUANTUM-SAFE ASYMMETRIC ALGORITHMS (TABLE 1 OF 2)

Scheme	Family	Туре	Secret Key (Octets)	Public Key (Octets)	Signature (Octets)	Ciphertext (Octets)	Shared Secret (Octets)
LMS	Stateful Hash-based	Signature	56 + (2,064 - 2,147,483,664)	32	1,296 - 9,328	-	-
XMSS	Stateful Hash-based	Signature	104 + (65,568 - 67,108,896)	32	2,500 - 2,820	-	-
SPHINCS	Stateless Hash- based	Signature	64 - 128	32 - 64	8,080 - 49,216		
BIKE	Code-based	KEM	3,194 - 11,749	1,478 - 11,217	_	1,478 - 11,217	32
Classic McEliece	Code-based	KEM	6,452 - 14,080	261,120 - 1,357,824	-	128 - 240	32
HQC	Code-based	KEM	40	3,125 - 8,897	_	6,234 - 17,777	64
LEDAcrypt	Code-based	KEM	24 - 40	1,872 - 8,520	-	1,872 - 4,616	32 - 64
NTS-KEM	Code-based	KEM	9,248 - 19,922	319,488 - 1,419,704	_	128 - 253	32
ROLO	Code-based	KEM	40	465 - 2,493	-	465 - 2,621	40 - 64
RQC	Code-based	KEM	40	853 - 2,284	_	1,690 - 4,552	64
Kyber	Lattice-based	KEM	1,632 - 3,168	800 – 1,568	-	736 – 1,568	32
FrodoKEM	Lattice-based	KEM	19,888 - 43,088	9,616 - 21,520	_	9,720 - 21,623	16 - 32
LAC	Lattice-based	KEM	1,056 - 2,080	544 - 1,056	-	712 - 1,424	32
NewHope	Lattice-based	KEM	1,888 - 3,680	928 - 1,824	-	1,120 - 2,208	32

QUANTUM-SAFE ASYMMETRIC ALGORITHMS (TABLE 2 OF 2)

Scheme	Family	Туре	Secret Key (Octets)	Public Key (Octets)	Signature (Octets)	Ciphertext (Octets)	Shared Secret (Octets)
NTRU	Lattice-based	KEM	935 - 1,592	699 - 1,230	_	699 - 1,230	32
NTRUPrime	Lattice-based	KEM	1,125 - 1,999	897 - 1,322	-	897 - 1,184	32
Round5	Lattice-based	KEM	16 - 32	445 - 14,264	-	549 - 14,288	16 - 32
SABER	Lattice-based	KEM	1,568 - 3,040	672 - 1,312	-	736 - 1,472	32
Three Bears	Lattice-based	KEM	40	804 - 1,584	_	917 - 1,697	32
Dilithium	Lattice-based	Signature	96 - 2096	896 – 1,760	1,387 - 3,366	-	-
Falcon	Lattice-based	Signature	4,097 - 8,193	897 – 1,793	618 - 1,233	-	-
qTesla	Lattice-based	Signature	1,216 - 12,352	1,504 - 38,432	1,376 - 5,920	-	-
GeMSS	Multivariate-based	Signature	13,415 - 77,712	36,0643 - 3,210,845	33 - 75	-	-
LUOV	Multivariate-based	Signature	32	5,120 - 77,312	311 – 4,390	-	-
MQDSS	Multivariate-based	Signature	16 – 24	46 - 64	20,854 - 43,728	-	-
Rainbow	Multivariate-based	Signature	95,232 - 1,256,551	152,576 - 1,746,432	64 - 204	-	-
SIKE	Supersingular Isogeny-Based	KEM	374 - 644	330 - 564	-	346 - 596	16 - 32
Picnic	Zero-Knowledge Proof/MPC	Signature	16 - 32	32 - 64	13,802 - 209,506	-	-

QUANTUM RESISTANCE IN THE REAL WORLD

ML-KEM **FN-DSA** ML-DSA **SLH-DSA** Crystals-Dilithium Crystals-Kyber SPHINCS+ **FALCON Proposed Name-**FIPS-204 **FIPS-203 FIPS-205** Released Security for fast Key encapsulation for Secure identities and Security for long term transaction secure electronic signatures use cases communications processing

DIGICERT PQC PERFORMANCE TESTBED

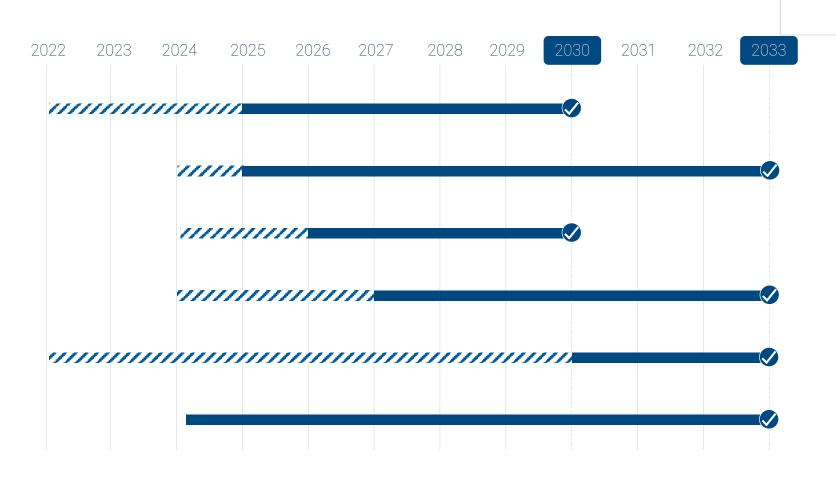
key sizes	p11_keygen_duration (secs)	p11_sign_duration (secs)		publicKey len bytes
SphincsSha2_128F	0	2	17088	32
SphincsSha2_128S	3	26	7856	32
SphincsSha2_192F	0	4	35664	48
SphincsSha2_192S *	5	80	16224	48
SphincsSha2_256F *	0	8	49856	64
SphincsSha2_256S *	4	84	29792	64
SphincsShake_128F	1	17	17088	32
SphincsShake_128S*	48	339	7856	32
SphincsShake_192F*	1	29	35664	48
SphincsShake_192S*	72	615	16224	48
SphincsShake_256F*	3	55	49856	64
SphincsShake_256S*	45	500	29792	64
key sizes		p11_sign_duration (msecs)	signature len (bytes)	publicKey len
MLDSA-44	661	1878	2420	1312
MLDSA-65	668	1875	3293	1952
MLDSA-87	705	1931	4595	2592

MIGRATION CHALLENGES & CRYPTO AGILITY

COMMERCIAL TRANSITION TIMELINE

CNSA 2.0 Adoption

Software/Firmware Signing


Web Browser/Servers and Cloud Services

Traditional Networking Equipment

Operating Systems

Niche Equipment

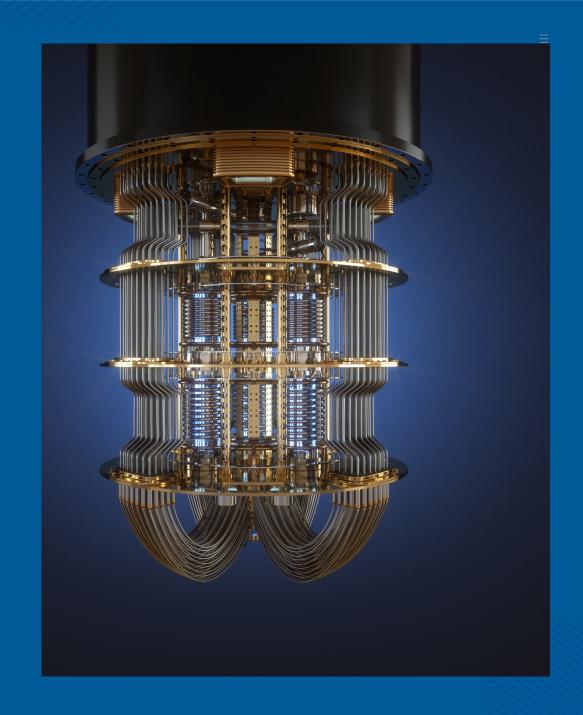
Custom Application & Legacy Equipment

CNSA 2.0 added as an option and tested CNSA 2.0 as the default and preferred Exclusively use CNSA 2.0 by this year

WHAT IS CRYPTO AGILITY?

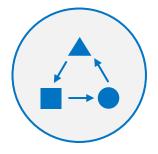
A design feature that enables updates to future cryptographic algorithms and standards without the need to modify or replace the surrounding infrastructure.

-The US Department of Homeland Security


NIST ON CRYPTO AGILITY

"As the replacements for currently standardized public key algorithms are not yet ready, a focus **on maintaining crypto agility is imperative.**

Until new quantum-resistant algorithms are standardized, agencies should continue to use the recommended algorithms currently specified in NIST standards."


- "Report on Post-Quantum Cryptography", NIST, April 2016

THE CHALLENGE

With increased connectivity, the scale of what needs to be updated also increases.

Maintain Interoperability

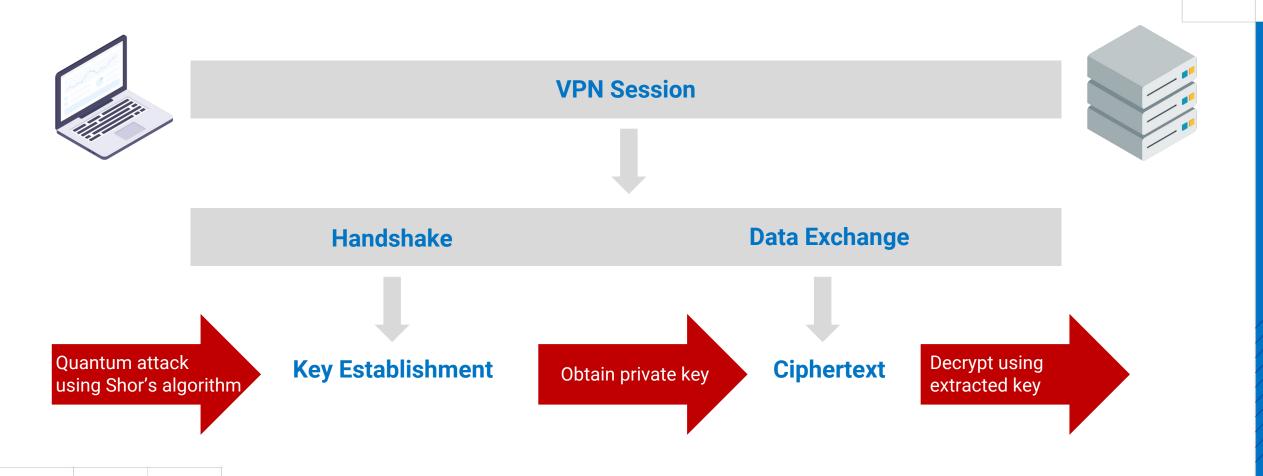
Migrate Critical Systems Faster

Reduce Switching Costs

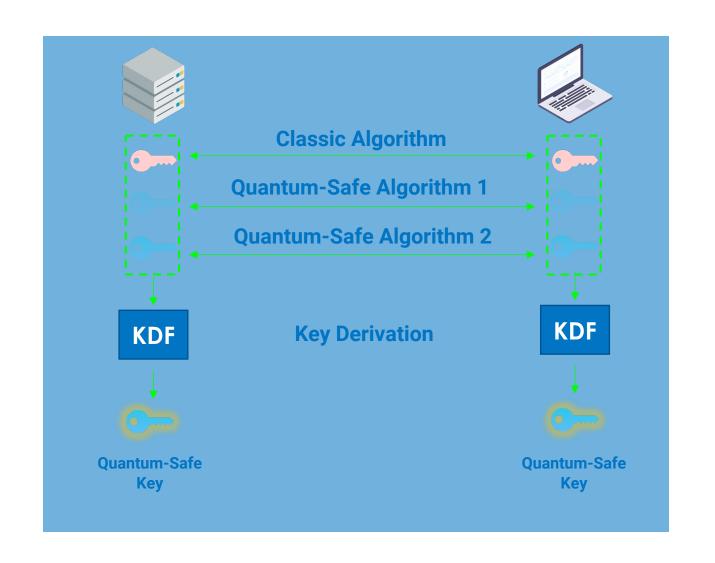
HOW ARE SECURE COMMUNICATIONS VULNERABLE?

Secure Communication Protocol

Shor's Algorithm breaks current public-key algorithms

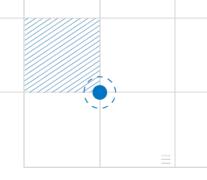

Key Establishment

Authentication


Grover's Algorithm
weakens
symmetric
encryption
(square root)

Encrypted Transmissions

A HARVEST & DECRYPT ATTACK ON VPN



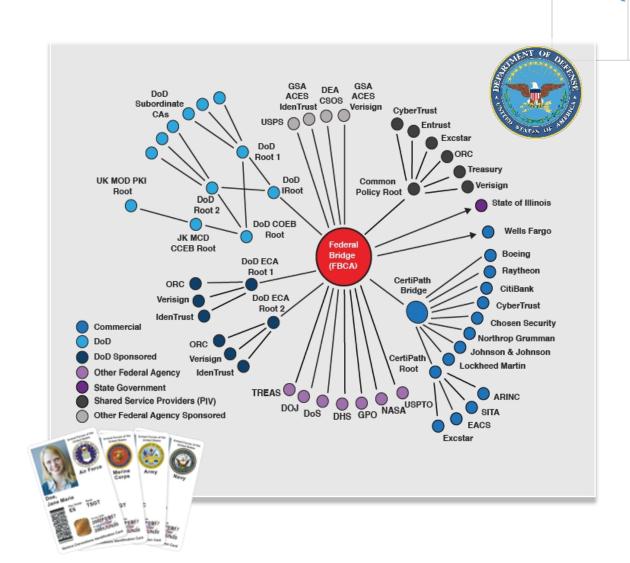
HYBRID KEY ESTABLISHMENT

THE MIGRATION CHALLENGE

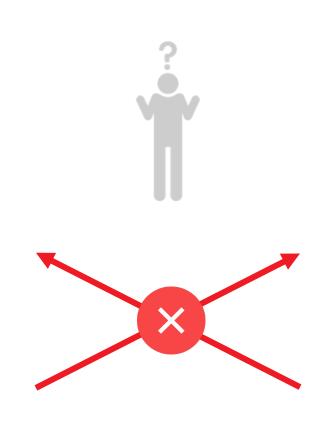
Key Establishment vs. Authentication

Key establishment can be easily upgraded because the client and server negotiate which algorithm to use.

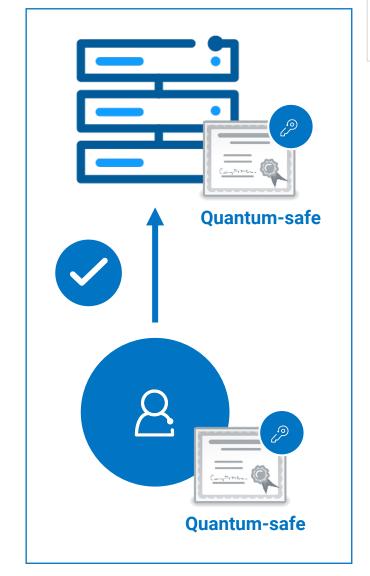
- 1. Use quantum-safe key transport or key agreement algorithms
- 2. Use hybrid keys, a mix of both classic and quantum-safe algorithms


The complexity and interconnectivity of public key infrastructure demands action today in order to be ready for the quantum age, and difficult to do while maintaining backward compatibility.


DOD PKI MIGRATION


There's more than 4.5 million active users in the DoD identity management system.

Creating a quantum-safe duplicate infrastructure is time-consuming and cost prohibitive.


CERTIFICATES SUPPORT A SINGLE ALGORITHM

User/server needs to select which certificate to use

PKI management costs increase

AGILITY IN UNCERTAINTY

Quantum ready means staying nimble and responsive as quantum technology unfolds.

Quantum-Resistant

Theoretical resistance to quantum attacks.

Quantum-Ready

Prepared and adaptable for quantum developments.

Quantum-Safe

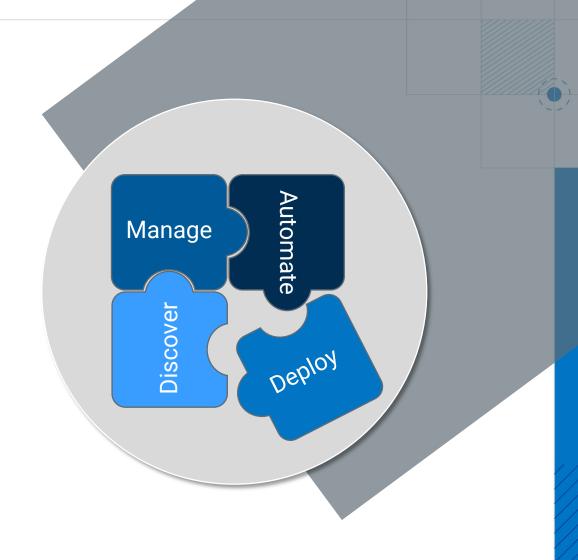
Implies security in the quantum era.

ROAD TO CRYPTO AGILITY

Discover

Identify and assess quantum vulnerabilities across your digital certificate ecosystem.

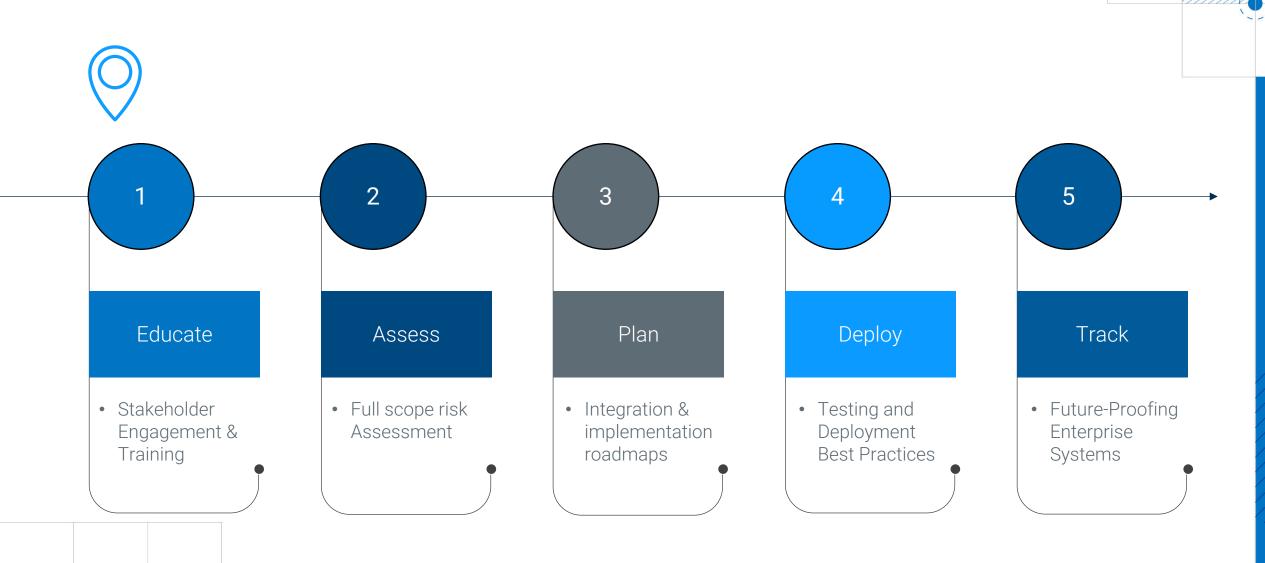
Manage


Optimize certificate lifecycle across networks with scalable and automated management tools.

Automate

Facilitate efficient PQC transition through automated workflows, reducing error and operational costs.

Deploy


Enable swift deployment of quantum-safe certificates, ensuring minimal disruption and maximized performance.

DIGICERT'S POSITION

PQC ADVISORY PROGRAM

DIGICERT PQC PLAYGROUND

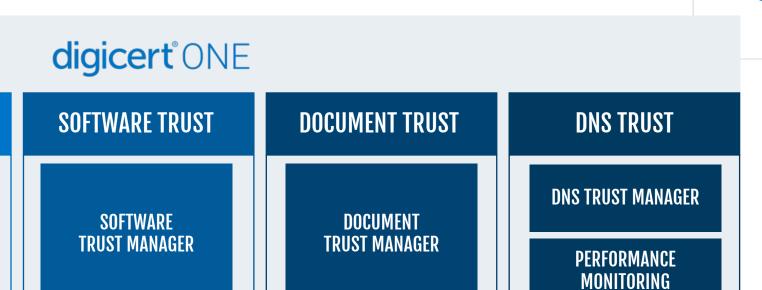
Complimentary tools to enable integration, interoperability, and performance testing. DigiCert experts will help you interpret results to create the right strategic plan.

Generate certificates to test authentication, digital signatures, key encapsulation

Understand the integration effort required across your environment

Identify interoperability risks across internal and external providers

Measure the computing resources required to support PQC at scale


LABS.DIGICERT.COM

PQC READY PLATFORM

DEVICE TRUST

IOT TRUST MANAGER

TRUSTCORE

Quantum-safe algorithms are the key to future-proof security.

ENTERPRISE TRUST

CLM & PKI SERVICES

(TRUST LIFECYCLE MANAGER)

PRIVATE

TRUST

PUBLIC

TRUST

(CFRTCFNTRAI)

APPLY WHAT YOU HAVE LEARNED TODAY

Next week you should:

• Conduct your own research on how large-scale quantum computing will impact public-key cryptography and how it will affect your business

In the first three months following this presentation you should:

- Perform an archeological expedition to understand how cryptography is used in your organization
- Identify and prioritize high-value assets for migration

Within six months you should:

- Collaborate with your internal team to create a migration plan
- Share your needs with key vendors to ensure their roadmap aligns

digicert

avesta@digicert.com

digicert

TRUST SUMMIT ROAD SHOW

