
Software supply chain attacks are increasing in frequency. A recent Gartner
report says that 45% of companies worldwide will experience attacks on
their software supply chains by 2025, a threefold jump from 2021.

Companies large and small are experiencing these attacks. By now, most
everyone has heard of supply chain attacks at SolarWinds, CircleCI and
3CX. More recently, Micro-Star International (MSI) suffered an attack that
compromised the private code signing keys used for its BIOS as well as keys
used for Intel’s BootGuard.

While basic security measures, such as Zero Trust principles, provide
companies with a first line of defense, more action is needed to secure a
company’s software supply chain and software development lifecycle.

Malicious actors use a variety of tactics when attacking a software supply
chain. They might target a compromised software developer’s password
to break into a software build system, steal or misuse unprotected code
signing private keys, insert malware upstream in common open-source
software packages, or use a combination of all these tactics. As the
Sunburst attack on SolarWinds demonstrated in 2019, attack tactics
are becoming quite sophisticated and complex, which means that more
sophisticated methods of fighting these attacks are required, as shown
in Figure 1.

4 BEST PRACTICES FOR PROTECTING AGAINST
SOFTWARE SUPPLY CHAIN ATTACKS
Integrating secure code signing, threat and malware detection, and SBOM generation

CHALLENGES

WHO SHOULD READ THIS:
Security, DevSecOps, and software engineering professionals
who are responsible for, or have a stake in, protecting their
company’s software development infrastructure from
breaches, attacks, and other vulnerabilities.

1

45% OF COMPANIES
WORLDWIDE WILL
EXPERIENCE ATTACKS
ON THEIR SOFTWARE
SUPPLY CHAINS

Other challenges are organizational and cultural: Software development
teams may resist security tools because they can be cumbersome, break
automated CI/CD build pipelines or slow down the software release process.

Security teams have a different set of challenges. They need to provide
security guidance and enforce compliance with many software teams
spread across the organization, often geographically distributed. In addition,
these teams often use different programming languages, and environments,
deploy software to different platforms and use different software build
infrastructure and software processes. This heterogeneity can make
defining, enforcing and monitoring software security policy across an
enterprise extremely difficult.

Finally, a new challenge for organizations is compliance with various
government and industry regulations that are meant to address software
supply chain attacks, such as those that require software transparency.

Several regulations and industry recommendations specify not only best
practices, but requirements that companies must follow to ensure the
integrity of the software supply chain. For example, the US Executive Order
on Improving the Nation’s Cybersecurity and the EU’s Cyber Resilience Act
requires that software bills of materials be generated to show software
transparency. NIST’s Security Considerations for Code Signing outlines steps
that should be followed for secure code signing.

This solution brief outlines four best practices that companies can leverage
to address these challenges, along with the ways DigiCert can help you.
The key aspect of these best practices is that they occur throughout the
software development lifecycle instead of focusing on a single SDLC stage
(see Figure 2).

BEST PRACTICES FOR SECURING SOFTWARE
SUPPLY CHAINS

2

Attacks can occur during any stage of the software development lifecycle. Stand-alone existing security tooling might detect specific types of attacks but will miss
other types. Therefore, a “shift up” approach is necessary to add security measures throughout the software development lifecycle.

Figure 1: Supply chain attacks can happen at any stage

SOURCE CODE COMPONENTS BUILD PROCESS /
INFRASTRUCTURE

PACKAGING DEPLOYMENT

#1: Secure Code Signing Across the Enterprise

Code signing is a basic security measure that has been in use for over 30
years. It uses cryptography to digitally sign a software package (executable,
library, app, etc.) to show that the software is authentic (e.g., software signed
by DigiCert really comes from DigiCert) and has not been tampered with by a
third party. Many operating systems, like iOS, macOS or Windows, will check
the digital signature of software before installing and running the package.

Software signing is so effective that malicious actors have been targeting
code signing systems to steal, compromise or misuse a company’s code
signing certificates and private keys.

An obvious first step in securing code signing is ensuring that all private
code signing keys are securely stored. A recent requirement from the
Certificate Authority/Browser Forum requires the storage of publicly trusted
private code signing keys in a FIPS 140 Level 2, Common Criteria EAL 4+
device such as a hardware security module (HSM).

While using secure storage is a necessary first step, it is not sufficient to
secure code signing across an enterprise. The reason for this is that a
compromised username/password could allow a malicious actor to access
the secure storage.

Enterprise secure code signing

Threat & vulnerability detection

Software transparency

Shift up - Policy driven approach to security
& enterprise-wide visibility

3

A multi-faceted, integrated, next-gen approach is needed to fight software supply chain attacks focused on multiple aspects of the SDLC.

Figure 2: Software Trust: shifting left, right... AND UP

ENTERPRISE POLICY DRIVEN APPROACH & VISIBILITY

DEV OPS

Instead, we recommend the use of an enterprise-strength code signing
system that offers a number of additional security measures, including:

•	 Automation of code signing certificate management, including
issuance and revocation.

•	 An approval process that specifies not only who can access a code
signing key but who needs to approve the access and under what
circumstances the key can be accessed (such as time of day, build
machine, etc.).

•	 A role-based system that specifies which users can access certain
code signing certificates and keys for signing operations, which are
authorized to approve signing operations, and which are allowed
to monitor.

•	 Maintaining an irrefutable record of all code signing activities to refer
to in the event of a compromised certificate.

•	 A single code signing system that supports a large volume of code
signing operations and many different software deployment and
development platforms and tools.

•	 A policy-based approach of control measures that must be satisfied
before software can be released.

•	 Sign intermediate software artifacts throughout the SDLC, including
source code before it is committed, build scripts and recipes, and
container and other software infrastructure files.

•	 Enterprise-wide visibility, policy definition and enforcement from a
centralized location no matter where various software teams
are located.

#2: Comprehensive Threat Detection

While code signing can prevent tampering after software is released, what
happens if software is tampered with before it is signed and released?
For example, a malicious actor with a breached build system could insert
malware into a company’s source code repository. Or a software developer
could download an open-source package that has hidden malware in it. Or a
previously undetected hidden vulnerability could be discovered.

Various security tools on the market address some of these issues, such as
software static analysis tools (SAST). However, these tools often only focus
on a single aspect (such as vulnerabilities with open-source software).

Instead, a comprehensive method is needed to look at scan final software
binaries for threats, vulnerabilities, presence of embedded secrets and
malware. This scan should occur no matter the original source of the
components of the software: open-source code, third-party commercial
libraries or proprietary code written by the company.

4

#3: Software Transparency

As mentioned earlier, government and industry regulations now more
frequently require software publishers to reveal what’s in their software,
much like a nutrition label indicates the ingredients in food. Known as
software bills of materials (SBOMs), these documents catalog all the
components in a given piece of software no matter the component’s source
(e.g., open-source, third-party library, etc.). As with a food nutrition label,
SBOMs not only indicate a list of software “ingredients” but can also be used
to assess the quality of those ingredients, such as versions used, known
vulnerabilities, etc.

Even if not required for compliance, organizations should generate SBOMs
so they can:

•	 Evaluate and prioritize the attack surface of their software: Look
for vulnerable or targeted versions of libraries or components, look
at software dependencies and check to see if there are missing
mandated security patches.

•	 Look for outdated components like missing mitigations and insecure
code signing practices.

•	 Take Proactive Defensive Measures by using software structure to
support detection and threat incident response teams and for
threat modeling.

#4: Shift Up: Control and Visibility Across the
Enterprise and SDLC

Many security measures look at/protect a specific part of the SDLC. We’ve
heard about shifting security left and shifting security right in a DevOps
process, which is akin to looking at individual trees in a forest. But as attacks
become more complex, organizations need to step back and shift their
focus up:

•	 Bring the entire SDLC process into view, looking at the software
as a whole.

•	 Have visibility of security policy, measures and results across the
entire enterprise.

•	 Be able to define and enforce security policy across the
entire enterprise.

•	 Perform threat and vulnerability analysis on final software executables
immediately before they are signed and released.

To effectively do this, as well as to be accepted by software development
teams, security tools must integrate seamlessly into existing software
processes and not slow down the software release process. They need to be
easy, or even transparent, for software developers to use.

5

©2023 DigiCert, Inc. All rights reserved. DigiCert is a registered trademark of DigiCert, Inc. in the USA and
elsewhere. All other trademarks and registered trademarks are the property of their respective owners.

DigiCert® Software Trust Manager is a digital trust solution that protects the
integrity of software across the software supply chain, reducing risk of code
compromise, enforcing corporate and regulatory policy, and delivering
fine-grained key usage and access controls for code signing.

DIGICERT SOFTWARE TRUST MANAGER

6

DigiCert Software Trust Manager minimizes the risks of security breach and
malware propagation in the development, build and release of software,
enabling companies to protect against software supply chain attacks and
comply with government regulations.

DigiCert Software Trust Manager helps large enterprises easily implement
these four best practices.

To find out more, please email pki_info@digicert.com.

DigiCert Software Trust Manager protects across the software development lifecycle by providing secure code signing, comprehensive threat detection, software
transparency, and enterprise visibility and control.

Figure 3: Software Trust Manager

SUPPLY CHAIN INTEGRITY FRAMEWORK

