
THE SOLARWINDS
TIPPING POINT

Table of contents

1 The Great Supply Chain Robbery
 The full story of the SolarWinds malware attack

2 SolarWinds—there’s a time before and a time after
 Realizing the extent of the breach and data theft

2 The forensics of a preventable disaster
 The supply chain makes the perfect target

3 Signing isn’t the last step in the build, it’s every step
 Only end-to-end signing delivers complete trust

4 There’s best practices and there’s not secure
 Are you following all these best practices?

6 Continuous signing facilitates the need for speed
 Implementing best practices won’t cause delays or interruptions

6 We’ve been warned, and now we take action
 The right tools and the right practices can prevent another SolarWinds

The Great Supply Chain Robbery

On Sunday, December 13, 2020, the United States acknowledged that
hackers had broken into several federal government computer networks.
Over the following weeks, the world learned that this sophisticated attack
was almost certainly the work of Russian agents, who had managed to
collect sensitive data, undetected, for months. As experts learned more, the
extent of the breach became clear. This was not just a successful act of
espionage. It was one of the largest malware intrusions in years1.

The attack was traced back to a software system, called Orion, an IT
management program built and sold by the Texas-based cybersecurity
company SolarWinds. Within a short time, SolarWinds became synonymous
with data breaches. But SolarWinds isn’t the first company to face a
damaging security breach, and the headlines don’t tell the full story.

This breach really began long before the attack was initiated, when
malicious code was slipped into the DNA of Orion. Now part of the CI/CD
build, it sat as a ticking time bomb, hidden within the software itself. The
hackers were patient. The timebomb had a very long fuse. They knew they
could exact the most damage by waiting. Over the months that followed,
Orion spread across the world, with installs in government agencies, major
corporations, even other software companies.

And then, one day, sometime after March 2020, the bomb went off. By the
time anyone was aware of the infiltration, it was too late. This isn’t only
because the malware worked, but also because Orion was everywhere. It
wasn’t just a matter of isolating one breach, one server. It wasn’t a single
patch. The attack was so large, we still don’t know how many systems,
businesses and organizations were affected—and we probably never will.

1 https://www.reuters.com/article/us-cyber-solarwinds-microsoft/solarwinds-hack-was-largest-and-most-
 sophisticated-attack-ever-microsoft-president-idUSKBN2AF03R 1

SolarWinds—there’s the time before and
the time after

What makes the SolarWinds attack so astonishing is its scale. The infected
Orion software was sold to more than 33,000 customers. Sunburst, the aptly
named malicious code, was distributed to as many as 18,000 organizations.
For months, this Trojan Horse sat inside the firewalled networks of tens of
thousands of unsuspecting businesses and government agencies.

In the aftermath, forensics discovered Sunburst intrusions in 425 of the
U.S. Fortune 500 companies, each of the top ten U.S. telecommunication
companies, five of the top U.S. accounting firms, and Microsoft itself.
Sunburst gave foreign agents access to the White House, all five branches
of the U.S. military, the Treasury Department, the Pentagon, the State
Department, the Department of Justice, the Department of Homeland
Security, the National Security Agency, and the National Nuclear Security
Administration. Outside the United States, Sunburst hit NATO, the United
Kingdom government, the European Parliament, and others. Public, private,
large and small, Sunburst made it through the gates, carried by supposedly
safe software that was signed.

2 http://safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

Just a decade before, many cybersecurity experts were saying that a supply
chain attack was extremely unlikely. It didn’t fit the profile of the type of
vulnerabilities exploited by cyber criminals. And because no individual or
single company could protect every link in the build, trying to secure the
supply chain was a fruitless task. This idea was so pervasive, Stacy Simpson
of SAFECode, along with a group of leaders from the field, published a
warning, recommending that DevOps professionals ignore these viewpoints
and implement code signing best practices to close intrusion points in the
CI/CD supply chain.2

But most people continued to believe that a supply chain attack was either
impossible to pull off or impossible to prevent. After the SolarWinds breach,
the world knew better.

The forensics of a preventable disaster

The type of vulnerability that led to the SolarWinds attack is nothing new.
Infected code has been a concern for security-conscious professionals
since the invention of the CI/CD pipeline. But until SolarWinds, there had
never been such a condemnable breach, one that was massive in scale, very
public, and totally preventable.

2

Like many companies, SolarWinds released Orion as a legitimate, signed
software package. In signing the software, SolarWinds promised customers
that they would be informed of any tampering or malware after the build
and release. When signed software enabled a breach, the digital world was
forced to pause and reexamine the entire software supply chain process.
How do we protect customers and end-users if code can contain malware
injected into the supply chain before signing?

Code signing itself is still proven technology, but the SolarWinds breach
showed that code signing alone isn’t enough to protect the supply chain.
Without source code scanning, 3rd party library scanning, proper staff vetting,
and a secure build environment—all in addition to code signing—software is
open to attack. It’s like having an advanced security system in your home,
but you only turn it on for an hour at a time.

In the aftermath of SolarWinds, the world learned of new supply chain attack
vectors, and that signing software may be the last step in the DevOps cycle,
but it’s not the only one. The entire process must be secured, controlled and
validated. Without complete security, the DevOps loop is never closed.

Signing isn’t the last step in the build,
it’s every step

When software is signed, it’s secured against tampering from the moment of
signing moving forward. But there’s more to it than encryption. Code signing
verifies the identity of the publisher, and it checks the integrity of the code
after downloading, so users know the software hasn’t been altered. Because

signed software means that software is trusted, it’s vital that DevOps teams
deliver software releases that are verifiably free of malware. Signed software
containing malware bypasses all the code signing checks ubiquitous to
public and private software distribution ecosystems. In essence, signing
software with compromised code tells the security gateways through the
rest of the supply chain and at the user access point not to look
for problems.

Protecting software integrity throughout the entire CI/CD process is the only
way to deliver complete trust. It’s not enough to sign software at the end of
your team’s development cycle. Code written by other teams in the supply
chain, including open source code and 3rd party library code, needs to be
scanned for malware and other anomalies. Only clean code should be used
to build software, and then signed, using the right signing keys, which have
been properly issued, managed and stored. Access to these signing keys
should be limited to only the users or automated build servers authorized to
use keys for signing.

This can seem like a daunting task, which is why the developers often
make use of weak security practices or shortcuts in order to keep builds
moving forward. We all know that speed and efficiency is the beating heart
of DevOps. Cumbersome steps that lead to missed deadlines can bring the
CI/CD process to a grinding halt. A solution that isn’t agile—one that creates
delays or interruptions—isn’t a solution at all.

In many cases, these signing processes can be automated to decrease the
need for human touches and give your developers time to focus on building
code without sacrificing the integrity of your security posture.

There’s best practice and there’s not secure

Signing software is important in and of itself, but it’s all too easy to overlook
the management of signing policies and practices—and that’s where we find
security gaps that can be exploited. When it comes to software security, the
choice is binary. You can choose best practices, or you can choose to leave
your supply chain open to attack.

Implementing code signing best practices will help to ensure that signing
isn’t the weak link in your supply chain. And, if implemented correctly, code
signing can also help to prevent malware injection.

1. Protect and control the use of signing keys and private keys

Private keys can be duplicated or stored in many locations. Physical keys
like USB tokens can be lost or left in an unlocked location. Disgruntled or
negligent employees may lose track of keys or steal them.

There are two options for fully securing private keys. You can store keys in
a properly maintained HSM, or you can leverage a managed PKI service to
secure the keys for you.

2. Enforce multi-factor authentication and FIPS-compliant storage with
public trust deployment

A password can be forgotten or compromised. Keys can be shared, lost, or
stolen. Likewise, physical USB tokens can be misplaced or misused.

To guard against user error or malicious intent, strong access controls
need to be in place. Multi-factor authentication (MFA) requires two forms of
credentials from users, proving identity. HSMs provide strong authentication
and resist physical tampering, ensuring secured keys can be accessed only
by authorized users.

3. Operate with full visibility

Without end-to-end auditing and user accountability, it is difficult or
impossible to track key misuse or signing anomalies.

Both keys and users need to authenticate prior to signing, and this
authentication and signing should be completed at every step in the
CI/CD process. These signatures must be tracked and auditable, so users
are accountable, and you know who signed what. The use of signing keys
by authorized users at unauthorized times can help IT security teams detect
problems before the software is moved to the next link.

4. Control your account-level security

When keys are used without permission controls, it is difficult or impossible
to protect and monitor keys and signing usage.

Keys should be assigned by permission and role, and separated by product,
project or team. Administrators should be able to generate private keys and
certificates and distribute keys to teams. Users should be restricted to those
assigned to signing-related workflows. Non-human components like build
servers should have keys assigned to permit automation.

5. Control your organization-level security

Organizational policies are just as important as individual roles and
permissions. Without a holistic policy and control structure, individual
security processes may fall out of alignment, creating vulnerabilities.

Create and enforce internal security policies across the board, from your
full organization to product development. This should include cryptographic
algorithms or key size, certificate validity periods, and certificate types or
approval workflows.

4

5

6. Rotate your keys

When the same key is used to sign multiple pieces of code, any compromise
to one piece puts all pieces at risk.

The ability to issue multiple keys quickly and easily, and to rotate those keys,
protects against an isolated intrusion turning into a widespread attack.

7. Set policies that assign certain types of keys to certain projects

Without tight control over different types of keys, organizations may lose
visibility over key access and usage, opening the door for unauthorized or
inappropriate key signing activities.

Re-use specific signing keys for specific products or projects restricted to
specific users and teams. Where possible, use on-the-fly private keys and
certificates, so each release is signed by a unique private key and certificate.

8. Never let your unsigned software leave your environment

Transferring full files for signing is not only slow and resource-intensive, it
also opens the possibility for interception or tampering in transit.

Hash signing solves all these concerns. Only the hash is uploaded to the
cloud for signing, so the process is nearly as fast as local signing. The code
itself stays on your internal servers, so your intellectual property cannot be
stolen or altered.

9. Regularly scan all your intellectual property

It may seem like a simple step, but a signature signals trust. Users assume
signed code is safe code. If a virus or malware is already embedded, the
developer will send supposedly trusted code to their customer.

Scan source code and 3rd party library code, as well as compiled code.
Check for any malicious injections and sign only when you’ve verified that
everything in the software is clean.

10. Make signing reproducible to validate what you’re signing

When you cannot compare builds against a baseline, you cannot be sure the
binaries are identical and reproducible by a quorum of users. This increases
the risk for undetected malware injection.

Compare the hashes of your binaries sent for signing against the baseline
before signing. This comparison is needed to validate that the production
build is generating the same outcome as the expectation in your test and
QA cycles.

Continuous signing facilitates the need
for speed

DigiCert Secure Software Manager is built to facilitate agile DevOps. By
leveraging automated processes, Secure Software Manager enables
continuous signing that delivers the highest level of trust, with end-to-end
security, all without any extra steps or a minute lost.

Sign code, software, and binaries rapidly, easily, and at scale. Create
reproducible build processes that automate baseline parameters, so
malware injection is detected before compromised code can be released.
Secure key management, control permission-based access, and utilize
reporting and tracking capabilities for visibility and accountability. DigiCert
Secure Software Manager is the single solution for implementing and
maintaining code signing best practices at every stage of your
CI/CD process.

We have been warned, and now we take action

When Stacy Simpson published the SAFECode report recommending
CI/CD supply chain protection, she couldn’t have known she was describing
not just a potential attack, but a very real attack—one that would be
considered amongst the most notable in digital history. In 2010, a supply
chain attack was considered a remote possibility for a weak intrusion. Ten
years later, the SolarWinds breach would be considered an example of a
devastatingly successful hack and theft.

Automated software signing with CI/CD processes using
DigiCert® Secure Software Manager

6

Ironically, the solution to the CI/CD supply chain threat was understood in
2010 and published in the SAFECode report. Because individual DevOps
teams and single organizations cannot hope to control all the parts of the
chain, the only way to combat supply chain cyberattacks is to implement
best practices that continually monitor the integrity of the code while it is in
development. If everyone in the build process scans and signs their code,
the entire supply chain is protected against weak links.

In 2010, this may have been a prohibitive expectation. If security practices
delay or interrupt the CI/CD process, then security itself can become as
damaging to DevOps as the risk of a breach.

But today, code signing processes can be automated. Automation alone
offers the tools needed by DevOps to severely restrict the attack surface of
the entire CI/CD landscape. With automation, DevOps teams can implement
continuous signing, so code, software and apps are protected using an
end-to-end integrity and encryption system—all with minimal human
touches.

With the success of the SolarWinds breach, we can only assume that other
cyber criminals have already initiated their own supply chain attacks. Part of
defending against this threat is moving as an industry toward code signing
best practices. If everyone in the supply chain is monitoring and securing
their code, then each link is protected during development and during transit
to the next stop in the pipeline.

At the end of the day, SolarWinds isn’t just the story of an astonishing act of
cyberespionage. It’s a tipping point, a watershed moment in the history of
code and software development. The world of DevOps cannot afford to say
we weren’t warned. The potential risk was known. The practical devastation
is now a matter of record. The tools exist to easily protect against the threat,
without delay or interruption. Now, it’s time for the entire industry to leverage
these tools and implement code signing best practices, so the DevOps
supply chain is protected from start to release.

© 2021 DigiCert, Inc. All rights reserved. DigiCert is a registered trademark of DigiCert, Inc. in the USA and
elsewhere. All other trademarks and registered trademarks are the property of their respective owners.

